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Abstract
Null-hypothesis testing (NHT) based on statistical signi�cance
is the most conventional statistical framework, on which neu-
roscientists rely for the analysis of their data. However, this ap-
proach can provide misleading results if p-values are wrongly in-
terpreted, as o�en done in practice. Misconceptions can arise,
in particular, when i) wrong null-hypothesis is chosen for refer-
ence; ii) the assumptions of the statistical model are not met; iii)
p-values are interpreted as the probability of the null- or alterna-
tive hypotheses or as the measure of the importance of �ndings;
iv) statistical thresholds guide scienti�c conclusions and decision
making; v) one applies multiple testing or p-hacking. In this com-
mentary, we address these issues by bringing into the focus the
uniform distribution of p-values with the hope of enhancing the
appreciation and proper use of the NHT approach among neuro-
scientists. We propose guidelines for the correct interpretations
of p-values that brain and behavioral scientists may adopt to im-
prove both the transparency of statistical reports and the value of
scienti�c conclusions drawn from them.
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Introduction
�is paper is a commentary on the recently published

formal statements of the American Statistical Association
(ASA) about the principles of the proper use and interpre-
tation of p-values (Wasserstein and Lazar, 2016). Neuro-
scientists heavily rely on null-hypothesis testing (NHT),
as most empirical studies use signi�cance thresholds to
make inferences from the data (Nakagawa and Hauber,
2011). Given that this �eld of research can be characterized
by speci�c circumstances for the statistical analyses (e.g.
hypothesis-driven experimental approach, limited sample
size), we believe that the ASA statement deserves amend-

ments from the perspective of this community. Here, we
will go through the de�nition of p-values and the state-
ments and comment them to help the objective integra-
tion of the principles into neuroscientists’ analytical prac-
tice. �is discussion will focus on the uniform distribu-
tion of p-values, a chief a�ribute of the NHT approach that
provides hindsight on misconceptions and misuses in hy-
pothesis testing. Finally, we formalise recommendations to
improve the practice of the use and report of NHT-based
statistics for scienti�c transparency.

What is the p-value?
�e ASA statement de�nes p-values as follow:

[A] p-value is the probability under a speci�ed
statistical model that a statistical summary of the
data [. . . ] would be equal to or more extreme
than its observed value.

�e textbook example that illustrates the meaning of this
de�nition relies on the comparison of the means of two
samples with Student’s test. �e details of the test are
unimportant here, but typically one computes the di�er-
ence between the sample’s mean, then divides it by an es-
timate of the standard-deviation and obtain a test statis-
tic typically noted tobs. If we assume a particular model,
referred to as null-hypothesis, we can prove that tobs fol-
lows a particular distribution (here, a Student distribution).
Hence, we know (still, if this null-hypothesis is true) what
is the probability of observing tobs or any value more ex-
treme than that. �is is how a p-value is computed (see
Fig. 1):

p = P (T ≥ tobs) (1)

assuming T is a random variable following Student’s dis-
tribution. Note that we are assuming here a one-tailed test
for the sake of simplicity, but everything described in this
paper applies to both one- and two-tailed tests.
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tobs

p=P(T>tobs)

Student distribution

Figure 1: Relationship between an observed statistics (tobs) and
its corresponding p-value, here illustrated assuming a t-test and
a Student distribution.

A feature of p-values, which we will refer throughout
as the “fundamental feature”, is their uniform distribution.
�is feature originates directly from their de�nition, but
is not very intuitive to deduce. However, this feature is
completely central to understand why p-values are used
for NHT and many of the misconceptions mentioned by
the ASA. To see this feature, let’s rewrite the de�nition of
p:

p = P (T ≥ tobs) = 1 − P (T < tobs) (2)

Note that P (T < tobs) is the cumulative probability corre-
sponding to the quantile tobs, meaning a proportion P (T <
tobs) of the Student distribution is below tobs. For continu-
ous distributions, there is an equivalence between a quan-
tile and its cumulative probability, meaning that choosing a
probability from a uniform distribution to compute the cor-
responding quantile is equivalent to drawing directly from
the distribution. �e direct consequence is this: under the
null-hypothesis, the p-values are distributed according to
a uniform distribution between 0 and 1. Fig. 2 shows the
uniform distribution of p-values of 10,000 repetitions of a
Student test for two samples drawn from a standard Nor-
mal distribution (hence the null-hypothesis is true). Note
that, here, the default two-tailed test was used.

�e fact that, under the null-hypothesis, the p-values are
uniformly distributed yields to the following property for
any given α :

P (p ≤ α ) = α (3)

In other words, for any given threshold α , the probability,
if the null-hypothesis is true, that the test yields a p-value
lower than this threshold is α . �is explains the relation-
ship between p-values and the false positive rate (FPR) of
a test, i.e. the probability of rejecting the null-hypothesis
when it is true. Indeed choosing a signi�cance threshold
of 0.05 for the p-values means that, if the null-hypothesis
is true, we will be wrong 5% of the time. Appreciating the
FPR (a.k.a. Type-I error) is extremely important for the sci-
enti�c interpretation of the outcome of the NHT because
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Figure 2: Distribution of the p-values yielded by 10,000 Student
test where the two samples are drawn from the same distribution,
i.e. the null-hypothesis is true.

it implies that statistically signi�cant results are always
loaded with a given amount of uncertainty concerning the
justi�cation of the rejection of the null-hypothesis. For the
relationship between p-values and FPR to hold, it is thus
necessary that the p-values are uniformly distributed be-
tween 0 and 1. Anything that will result in a disturbance of
this distribution will thus result in an illusory FPR control,
which we will highlight in the following sections focusing
on particular ASA statements.

Statements
1. P-values can indicate how incompatible the data
are with a speci�ed statistical model. �is statement
means that p-values describe the probability of observing a
given data or any more “extreme” data if a null-hypothesis
is true (this is simply another way to formulate the de�-
nition given above). �erefore, p-values describe a condi-
tional relationship between the data at hand and the under-
lying null-hypothesis. �e consequence of this condition-
ality is that p-values do not say anything about the com-
patibility of the observed data with alternative hypothe-
ses/models (which might as well be wrong). �erefore,
a low p-value can be a motivation for disfavouring the
considered null-hypothesis as an explanation for our data,
but it cannot be used as a support for any other hypothe-
ses. In other words, if a wrong null-hypothesis is chosen
as a reference, it will systematically produce very low p-
values but without having any implication for other alter-
natives. Fig. 3 depicts some scenarios when the compat-
ibility of the same data is assessed against di�erent null
models. For this �gure, we simulated data under a model
that assumes a normal distribution with a zero mean and
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Figure 3: Distribution of the p-values of a t-test of the same data when tested against di�erent hypothetical means.

unit variance. �en we challenged the generated data with
series of one-sample t-tests that di�er in the hypothetical
mean values they rely on. What is evident from this ex-
ercise is that the uniform distribution of p-values does not
hold when the model used for data simulation is di�erent
than the null-model considered in the statistical analysis
of the generated data. Since we simulated the data for il-
lustrative purposes, in this example we know that the cho-
sen null-hypothesis is true or not. However, this is not the
case in most of the empirical situations, when we have no
clue about the probability that the studied hypothesis is
true. Typically, the null-hypothesis is a statement about
the absence of an e�ect, i.e. there is no di�erence between
groups, or no relationship between two variables. Yet, bio-
logically such null models sometimes embody nonsensical
situations, when small p-values only indicate that a silly
null-hypothesis was considered for the evaluation of the
data (Cherry, 1998; Johnson, 1999; Anderson et al, 2000;
Guthery et al, 2001). For the interpretation of p-values,
hence, it is always essential to understand that it is always
speci�c to the chosen null, and that the NHT output only
tells us how our data �t with this reference but nothing
more.

One important component of the �rst ASA statement
is that for p-values to be interpretable the underlying as-
sumptions of the model should be held. �is is for a good
reason: the uniform distribution of p-values is warranted
only when the null-hypothesis is true, which includes
those assumptions. If those assumptions are not met, then
the null-hypothesis of no e�ect might seem highly incom-
patible with the data even in the absence of the e�ect, sim-
ply because it is not true. To illustrate this, let us modify
the t-test example. Now, one sample comes from a Nor-
mal distribution, but the other one is sampled from a χ 2

distribution with 1 degree of freedom. Both of those distri-
butions are set to share the same mean of 1 (no “biological”
e�ect). �e resulting distribution is shown in Fig. 4: we can
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Figure 4: Distribution of the p-values of a t-test when one of the
sample is not normally distributed.

see that the distribution of p-values is heavily altered by
the violation of the Normal assumption made by the t-test,
despite there being no change in average value between
the two samples. As a consequence, a 5% threshold yields
a FPR twice as high as expected (9.5% of positive tests).
As another example, we can envisage the situation, when
the residuals of a regression model are not independent
(e.g. because of spatial/temporal autocorrelation or phy-
logenetic relatedness). If the data are analysed with a con-
ventional linear model that assumes normal, homoscedas-
tic and independent residuals, the probability of the null-
hypothesis of no relationship between variables becomes
very small. However, if the same data are submi�ed to a
model that incorporates the appropriate dependence struc-
ture, the uniform distribution of p-values can be regained

3



Ordinary Least Square Generalised Least Square

0

2000

4000

0

200

400

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
P-value

C
ou

nt

Figure 5: Distribution of the p-values from a regression that assumes non-independent residuals (Ordinary Least Squares) or ac-
counting the correlation structure (Generalised Least Squares) while these are autocorrelated.

(Fig. 5). Consequently, the assumptions are the key com-
ponents of the null-hypothesis that are need to be checked
before interpreting any signi�cance test.

2. P-values do not measure the probability that the
studied hypothesis is true, or the probability that
the data were produced by random chance alone.
�ere are at least two logical �aws with interpreting p-
values as being the probability of the null-hypothesis. First,
the de�nition of a p-value already assumes that the null-
hypothesis is true, so it would be nonsensical that p then
measures the probability of the null-hypothesis. Second,
the fundamental feature states that if the null-hypothesis
is true, any value of p is equally likely, meaning that p itself
would be a silly measure of this probability. Fig. 3 nicely il-
lustrates these points. From the underlying simulation, we
know that the probability of the null-hypothesis is 1 for the
�gure in the le�, because the data were speci�cally gener-
ated under this model. In spite of this, p-values can take
any values between 0 and 1 with equal probability. In the
other �gures, the probability of the null-hypothesis is 0, be-
cause we know that we used di�erent models for data gen-
eration. In these cases, p-values tend to be lower than 1 and
their distribution is skewed towards 0, but none of the ob-
served p-values are exactly 0 (in the whole simulation, the
lowest p-value that we observed was 8 × 10−12). �ese �g-
ures also show the falsehood of equating p-values with the
probability that the data were produced by random chance
alone, since for each �gure the data were generated by ran-
dom chance alone. �e probability of random chance is,
therefore, 1, but p-values we obtained varied within the
range between 0 and 1 (in the whole simulation, the high-
est p-value that we observed was 0.9999639).

3. Scienti�c conclusions and business or policy deci-
sions should not be based only on whether a p-value
passes a speci�c threshold. Given their de�nition and
their fundamental feature, p-values are a useful tool for
signi�cance testing, because, by using a pre-established
signi�cance threshold, it allows for a transparent control
of FPR, i.e. the probability of accidentally �nding e�ects
when there are none. However, it is important to note
that p-values are informative regarding the error we might
commit while rejecting the null-hypothesis, and only that.
In fact, they are not directly informative about this error,
only through they long-run distribution (to which we most
o�en don’t have access in practice). From the days of Fisher
(1925), the most commonly used threshold for such an er-
ror rate is α = 0.05. Since then, “we teach it because it’s
what we do; we do it because it’s what we teach.” (Wasser-
stein and Lazar, 2016). However, this is a completely ar-
bitrary threshold that is chosen for some convenience and
is independent from any biological motivation. �erefore,
it is also completely sound scienti�cally to establish a pre-
de�ned (and clearly stated) threshold, say, at α = 0.0743
or α = 0.0214, and appreciating such risk for mistakenly
rejecting the null if it’s true. In terms of evidence for reject-
ing the null-hypothesis, the di�erence between these sce-
narios is not important. Applying threshold to p-value is
always good for FPR control, but it does create an arti�cial
asymmetry for scienti�c arguments about the existence or
absence of biological e�ects. Whereas deciding if an e�ect
is “signi�cant” with a yes-or-no response might be needed
for policy or business decision makers on the one hand (i.e.
about commercialising a new treatment), one might argue
that most researchers, on the other hand, have the luxury
(even the duty) of acknowledging uncertainty about their
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hypotheses.

Possibly the most important problem with using a
threshold based on p-values for justifying scienti�c claims
is associated with the issues of ignoring e�ect size, as dis-
cussed under statements 5 and 6 (see below). Particu-
larly, since p-values measure neither the size of the e�ects
nor the importance of �ndings, and do not embody a reli-
able measure of evidence, they cannot serve as a strong
motivation for concluding that a hypothesis is “true” or
“false”. Imagine for example that a very well conducted
analysis on the relationship between broccoli consumption
and Alzheimer disease �nd (a�er carefully accounting for
any confounding e�ect) an increased risk with a p-value
of 6.3 × 10−8. Would that be enough to justify a ban on
broccolis? Of course, replications of the study would be
needed, as well as possible con�rmation on animal models
and study of possible mechanisms before having a ban in
place. But even investing money in these studies is a deci-
sion we might not want to make, for a very good reason:
the p-value does not tell us how much the risk is increased.
Would time, money, death of animals and change in our
diet be justi�ed for a very signi�cant increase of 0.01% of
the risk of Alzheimer disease? Most probably not.

For further discussion about the shortcomings of the use
thresholds to mediate “binary” thinking about e�ects that
operate in a continuous scale in nature see Stephens et al
(2007b), Hurlbert and Lombardi (2009) or Murtaugh (2014).

4. Proper inference requires full reporting and
transparency �e de�nition and uniform distribution
of p-values imply that if we perform a large number of
tests on data that are completely compatible with a null-
hypothesis, in some instances we can obtain very small p-
values (Fig. 2). If we work with the conventional FPR at
α = 0.05, one out of twenty tests will be signi�cant and
suggest that the null-hypothesis can be rejected even if it
is true. Given that such an error rate is inherent to NHT,
one should be extremely careful when conducting multiple
tests on the same data. In particular, performing multiple
analyses and reporting only those that surpass a particu-
lar signi�cance threshold leads to uninterpretable p-values
and wrong scienti�c practice. For example, if we put a
dead salmon into an fMRI scan and take a large number
of images, some of these will reveal a signi�cant di�erence
between signal and noise levels by chance (i.e. false posi-
tives) leading to nonsensical conclusions about brain activ-
ity when statistical thresholds are le� uncorrected (Benne�
et al, 2011). We will investigate two further scenarios here,
p-hacking and hidden multiple testing that, based on our
experience, we feel important to bring into the a�ention of
practising neuroscientists.

First, let us imagine a caricature of a common situation,
in which a researcher is assessing some forms of brain ac-
tivity under two experimental conditions (say a control
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Figure 6: Distribution of the p-values in absence of any e�ect
when p-hacking is used.

and a stimulated/inhibited treatment). Because such stud-
ies need to be carefully executed, it takes a long time, and
our researcher can only assess 5 individuals in both con-
ditions a week. Entering the data and analyse them is
much quicker, so the eager researcher computes the test
at the end of each week and obtain a p-value. If the p-
value gets below 5%, the researcher decides that s/he can
stop the experiment because s/he has enough data to say
the e�ect is real. If, a�er 10 weeks of behaviour assess-
ment (sample size of 50), the test is still negative, the re-
searcher gives up and deems the result of the experiment
as negative. �is might sound like as sound approach, but
it isn’t. It is actually a form of p-hacking (Ioannidis, 2005;
Forstmeier et al, 2016) and has a strong impact on the distri-
bution of p-values. Fig. 6 shows again a simulation of this
exact behaviour and the resulting distribution of p-values
in the absence of any e�ect: the impact is very important
and it results into a FPR of 19.5% at a 5% threshold (four
times as high as expected). �e above example assumes a
naive researcher, but even worse, p-hacking can also oc-
cur intentionally when one performs several tests at the
same time and then aims at publishing the outcome from
those that were associated with signi�cant p-values. Such
a practice can lead to “scienti�c” results that show that psy-
chologist students can see future (Galak et al, 2012). Sta-
tistical tools are now available that can assess the degree
of p-hacking occurring in the published literature (Simon-
sohn et al, 2014), which reveal that p-hacking is widespread
in both biological and medical/health sciences (Head et al,
2015).

Second, let us now envisage an illusory situation, in
which a researcher has an access to a system that can mea-
sure neuronal activity in several brain nuclei, and the re-
searcher wishes to study their relationships with a certain
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Figure 7: Distribution of the p-values in absence of any e�ect as consequence of hidden multiple testing. �ree sets of independent,
normally distributed random data were simulated and entered into a multiple regression model as predictors. �eir e�ects on a fourth
randomly generated response variable were assessed in a 10,000 series of repetitions relying on a sample size of 30 for each variable.
Panel A shows the distribution of the smallest p-values from these models. Panel B is obtained when a stepwise removal of terms
applied until only terms with signi�cant p-values or the one with the lowest p-value remained in the �nal model. Panel C shows
results when the stepwise procedures were based on AIC

behavioural trait. We assume that the researcher knows
that testing the correlations between the behaviour and
the activity of brain nuclei one by one and selectively pub-
lish only the signi�cant �ndings that comes out from this
�shing exercise is a bad practice. S/he would like to per-
form a single analysis instead, and decides that s/he en-
ters the physiological variables into the same multiple re-
gression as predictors, and examines their slopes on the
behavioural variable from the ��ed model. �en the esti-
mated parameters (slopes and intercept) and the associated
p-values are printed into a result table. Until this point, this
is a sound approach, but if signi�cant p-values from the ta-
ble are interpreted as supports at 5% FPR for the rejection
of the null hypotheses for the particular variables being
unrelated to the behaviour, the researcher enters into the
trap of hidden multiple testing (Forstmeier and Schielzeth,
2011). Fig. 7 demonstrates how the distribution of p-values
is a�ected when three randomly generated variables en-
tered into a multiple regression model that tests for their
relationship with a random response variable. Panel A cor-
responds to the situation when the variable with the low-
est p-value from the multiple regression is considered only
(the approach that is followed by the above researcher who
selectively wishes to focus on the signi�cant e�ects). In
terms of FPR, it means that out of 100 multiple regressions
based on completely independent variables, there will be
on average 13.5 that reveal at least one signi�cant slope
just by chance. Panel B is for the scenario when a step-
wise procedure based on the removal of the least signi�-
cant e�ects is applied until only signi�cant terms remain
in the model. �e stepwise approach typically assumes
that terms not included in the �nal model have zero e�ects.
Hence, if all variables are removed until the �nal step they

are considered to ful�l the underlying null-model, thus we
could assign a p=1 to each of them. For illustrative pur-
poses, in our exercise we kept the variable with the lowest
p-value in the �nal model, even if it did not pass the sig-
ni�cance threshold (to avoid the preponderance of values
at p=1 of the histogram). Finally, panel C shows the results
that are based on a stepwise procedure relying on Akaike’s
information criterion (AIC) for the removal of terms in-
stead of p-values (which is actually a bad practice but still
used frequently, see Whi�ingham et al, 2006). Each case
illustrates that hidden-multiple testing generates pertur-
bations on the uniform distribution of p-values, and it is
misleading to selectively focus on the signi�cant p-values
in a multiple regression. �is is because, the signi�cance
of terms in a multiple regression corresponds to di�erent
null-hypotheses (the particular term is zero), thus the num-
ber of signi�cance tests applied is equal with the number
of terms in the model, even if we are considering a single
model. Note that this argument applies for the signi�cance
of particular variables in the model, while the signi�cance
of the full model including all e�ects is not a concern here.
�is is because, the p-value for the full model refers to the
compatibility with a single null-hypothesis (the only in-
tercept model). Note that a problem akin to multiple com-
parisons can appear even when a unique test is performed
with no apparent “p-hacking”, due to the researcher de-
signing statistical tests based on how the data at hand are
generally behaving (so-called “researcher degrees of free-
dom” Gelman and Loken, 2013).

5. A p-value, or statistical signi�cance, does not mea-
sure the size of an e�ect or the importance of a result.
When the null-hypothesis is false, it might get rejected be-
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Figure 8: �e p-values distribution for testing a small e�ect. A model description of the test in on A: two populations (blue and red)
are testing and di�er in average by a very small amount (mean depicted as vertical lines). On the right, distribution of the p-values
when 10,000 test are performed with a sample size of 30 (B) or 1,000 (C). Mean p-value is depicted as a red vertical line.

cause of a low p-value. Because the lowest the p-value
is, the strongest is the case against the null-hypothesis,
one might conclude that a lower p-value is the sign of a
stronger e�ect. But this is not the case, as the relationship
between the p-value and the e�ect size is rendered com-
plicated by many factors such as the level of noise in the
data (e.g. due to biological noise or measurement error)
and the sample size (e.g. a test might be signi�cant over a
tiny e�ect, provided the sample size is big enough; on the
other hand biologically important e�ects might be associ-
ated with non-signi�cant p-values if sample size is small).
To illustrate this, let’s consider a Student test performed
with a very small e�ect size. Fig. 8A shows the distribution
of two populations di�ering in 0.1 in their average value.
We compare 10,000 simulated tests with a sample size of 30
or 1,000. With a small sample size, we observe only a slight
deviation from the uniform distribution (Fig. 8B). �is re-
sults in an average signi�cant (at the 5% threshold) p-value
of 0.023 (the average of signi�cant p-values expected under
the null-hypothesis is 0.05/2 = 0.025). With a large sam-
ple size however, the uniform distribution is very distorted,
with a very high peak of small p-values (Fig 8C). Here, the
average signi�cant p-value is 0.012. Since both simulations
have the exact same biological se�ings (e.g. same e�ect
size) and di�er only by their sample size, it is obvious from
this toy example that the p-values are a bad estimate of the
biological e�ect size.

Furthermore, statistical signi�cance provides no mea-
sure for either the sign or the magnitude of the e�ect be-
ing correctly estimated. In a study that is loaded with
measurement errors and constrained by small sample size,
there is an increased chance to estimate e�ects that have a
sign in the wrong direction (Type S error) or with an ex-
treme overestimation of the e�ect size (type M error, Gel-
man and Loken, 2013; Loken and Gelman, 2017). �erefore,
because of �ltering of the e�ect sizes by statistical signif-
icance, the signi�cant estimates will be more likely to be
of severely biased magnitude. For example, in the above
simulation study, when the sample size was low (N = 30),
13% of the signi�cant e�ects had a sign in the wrong direc-

tion (type S error, i.e. the mean of the red population was
smaller than that of the blue population), while the e�ect
size was on average overestimated by a factor 6 (type M
error). �e picture was di�erent for the large sample size
scenario (N = 1000, type S error at 0% and type M error at
1.28).

In fact, sample size, e�ect size and p-values are all
describing di�erent aspects of the statistical testing and
should always be reported together. E�ect sizes are not
known a priori (such as we have no information about
the reliability of the null-hypothesis), but these are what
we actually intend to estimate in the form of correlations,
slopes or di�erences between experimental groups etc. (or
some standardised derivates of these, see Nakagawa and
Cuthill, 2007). �ese are continuous measures, and not a
binary state variables describing if there is an e�ect or not
(as the binary thinking would enforce us to think about
nature). �e precision of these estimates is determined by
the sample size and measurement errors, and in fact always
should always accompany parameter estimates in the form
of standard error or con�dence interval. �erefore, if an
estimated e�ect size is associated with low precision (wide
con�dence range) we will have high probability to observe
data that con�nes the null-hypothesis stating that the fo-
cal e�ect size is zero. �erefore, the e�ect size captures
the biological importance that we wish to estimate, while
the precision (or con�dence) of this estimate is determined
by the constraints of the data at hand. Although both of
these aspects contributes to the importance of the results,
mean estimates of the e�ect size and their precision re�ect
completely di�erent things. Being a summary statistics, p-
values combines these properties into a single test statis-
tics. �is is handy for the particular process of NHT, but it
means that looking at p-value alone cannot allow one (es-
pecially a reviewer) to separate the in�uence of e�ect size
from the e�ect of sample size.

6. A p-value does not provide a good measure of ev-
idence regarding a model or hypothesis �is state-
ment can be directly deducted given the uniform distribu-
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tion of p if the null-hypothesis is true. How could some-
thing that can take equally any value between 0 and 1 if the
null-hypothesis is true bear any evidence in favour of this
hypothesis? Having a p-value of 0.80, for example, tells us
li�le about the evidence in favour of the null-hypothesis
apart from the fact that it cannot be ruled out. P-values do
bear evidence against the null-hypothesis, but only when
they are low: the lowest the p-value is, the more “surpris-
ing” the result of the test was, should the null-hypothesis
be true. However, in this case, we still do not have any
evidence on how other alternative models explain the ob-
served data.

Recommendations
Keep your distribution uniform As we saw, p-values,
and especially their signi�cance threshold, are only mean-
ingful if their distribution, should no e�ect be real, is uni-
form. In practice, one does not have access to this distribu-
tion, so how can we ensure this? Here we have pointed
to some issues that can cause perturbations on the uni-
form distribution of p-values under the null-hypothesis.
Accordingly, violating model assumptions, p-hacking, hid-
den multiple testing are obvious scenarios that should be
avoided. We feel essential to reiterate that any statisti-
cal test have various axillary assumptions (normality, ho-
moscedasticity, etc…), and these assumptions need to be
carefully checked before applying a statistical test. �is is
not only because the deviation of these assumptions can
have an in�uence on the interpretability of p-values, but
also because such violations can raise biases in parameter
estimates or make the model sensitive to small changes in
the data. For further discussion about the importance of
model checking see Zuur et al (2010), Loy and Hofmann
(2013) or Mundry (2014).

�e issue about p-hacking revolves around the realisa-
tion that the process of statistical testing needs to be inde-
pendent from data collection. Assessing signi�cance along
data collection or sub-sampling data toward signi�cance
either intentionally or unintentionally are dangerous for
scienti�c evidence because (i) they are heavily hampering
the uniform distribution of p-value and (ii) they are hardly
detected by the reviewing process and can generate publi-
cation bias.

When a large number of tests are performed simulta-
neously p-values are not suited to control for FPR, even
if this is done within a single multi-predictor statistical
model. �erefore, the interpretation of p-values in the
case of multiple testing is challenging. Di�erent correc-
tion methods exist that can be used to achieve a reasonable
control on FPR. �e commonly used Bonferroni correction
is o�en conservative because it focuses the FPR control on
the overall analysis, as if one expects only a single test to be
positive among all performed tests (hence loosing power as

the number of performed tests increases). �is constraint
is relaxed when using the false discovery rate (FDR) that
focuses on the proportion of false positives among the sig-
ni�cant results and is based on the whole distribution of p-
values (Benjamini and Hochberg, 1995; Storey, 2003; Storey
et al, 2004). �erefore, the FDR approach embraces the fun-
damental feature that p-values from tests with non existing
e�ect must be uniformly distributed (François et al, 2016).
Although, we cannot provide an exhaustive and balanced
review on the existing correction methods, we note that
�nding the best correction method for the data and ques-
tion at hand is o�en challenging. �e issue we want to
bring into a�ention here is that when multiple testing is
applied, uncorrected p-values are non-interpretable (Ben-
ne� et al, 2009).

We must admit that in our discussion, we may not have
identi�ed all scenarios that result in the distortion of the
uniform distribution of p-values. However, relying on the
�exibility of modern statistical computing environments
(such as in the program R), it is relatively easy to perform
a simulation study to examine this fundamental feature in
association with the current statistical situation. Similarly
to the philosophy we followed above, one can generate
data under the applicable analytical design and data con-
straints considering that the underlying null-hypothesis is
true, then �t the statistical model and a�er several repeti-
tions examine the distribution of p-values from the simula-
tion outputs. If this distribution shows pa�erns of deviance
from being uniform, one may conclude that the fundamen-
tal condition of NHT is not met, thus p-values from the
model that is ��ed to the real data may be misleading.

Is the considered null-hypothesis appropriate? One
of the chief points of the ASA statements was that a
given p-value is always conditional to a particular null-
hypothesis. �erefore, if an implausible (i.e. silly) null-
hypothesis is chosen for reference, interpretations from an
arbitrarily low p-value are deceiving. �e plausibility of
a null-hypothesis is not always straightforward, as it may
depend on prior knowledge, the way of reasoning and the
biological question. A typical null-hypothesis posits the
absence of an e�ect, i.e. that there is no di�erence between
two groups, or there is no relationship between two vari-
ables (correlation or slope equal to zero). In some cases, the
consideration of such null-hypothesis might be nonsensi-
cal (e.g. when contrasting a group of mice with a group of
elephants, or when investigating the allometric relation-
ship between brain size and body size when the correla-
tion between variables is non-zero by de�nition). In other
instances, plausibility may be context-speci�c, and a rea-
sonable null-hypothesis can turn into a highly implausible
one due to the accumulating evidence. Although based on
careful scienti�c thinking and biological motivations sen-
sible null hypotheses that allow proper inferences from p-
values can be formulated in most of the cases, these might
be di�erent than what the default models propose based
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on statistical considerations. For example, the signi�cance
that is given by most statistical packages for a complex
model including many predictor variables yields the in-
compatibility of the data with the null model containing
only the intercept. However, biologically, a more rational
null model would be a model that includes not only the
intercept, but also the control variables (with which the
full model could be contrasted with a likelihood ratio test).
Note that the signi�cance of particular parameter estimate
(i.e. a slope or intercept) in the same model re�ects a com-
parison with a null model that includes the same list of
predictors except the focal parameter (or in other words,
a null model in which the parameter is forced to be zero).
It is the researcher’s responsibility to check the biological
meaning of the null-hypothesis, and eventually smartly re-
de�ne a null-hypothesis that does not inherently postulate
zero e�ect. We keep on reminding the readers that null hy-
potheses should be handled jointly with the auxiliary as-
sumptions, thus the considerations about the plausibility of
a null-hypothesis also include issues about these assump-
tions.

Interpret the p-value correctly We re-articulate here
that p-values cannot tell much in favour of the null-
hypothesis, about the strength of the relationships or im-
portance of the results, and about the probability of an
alternative hypothesis. �erefore, researchers may want
to avoid statements along these lines. �e sole and only
meaning of a signi�cant p-value is that the null-hypothesis
might be rejected with a certain level of con�dence (typi-
cally 5%). �is does not necessarily mean that “there is an
e�ect”, it might well be that the null-hypothesis is rejected
because it was a bad model for the data to begin with (e.g.
because an underlying assumption was not met), even in
absence of any e�ect. Yet, these conclusions can only hold
at the appreciated FPR indicating that a known proportion
(i.e. “alpha”) of tests will reject a true null-hypothesis when
it is true (type I error or false-positive). A non-signi�cant
p-value, on the other hand, can indicate that we cannot ex-
clude the null-hypothesis as a potential explanation for the
observed data, but this conclusion should not intuitively
imply that “there is no e�ect” and alternative hypotheses
cannot be true (see paragraph below about “negative” re-
sults). �is scenario also incorporates erroneous decisions,
as at an unknown rate (i.e. “beta”) we will not be able to
reject a wrong null-hypothesis though it is false (type II
error or false-negative). Both false-positives and false neg-
atives are always integral to hypothesis testing. But it is
important to appreciate that 5% FPR does not imply that
only 5% of positive results will be false. �is la�er prob-
ability (of false positives among the signi�cant results) is
actually called false positive report probability (FPRP) and
depends on the FPR (type I error), but also on the type II er-
ror and the proportion of true and false hypotheses tested.
Typically, and especially at low power or when dubious
hypotheses are investigated, the FPRP is much higher than
FPR (Ioannidis, 2005; Forstmeier et al, 2016), indicating that

a large proportion of signi�cant research �ndings can be
expected to be false.

Correctly interpreting p-value signi�cance is one thing,
but caution is also recommended when interpreting the es-
timates of signi�cant models. Not only type I (FPR) and
type II (1-power) should be considered when discussed the
e�ect sizes of signi�cant models, but also type S and M
errors (Gelman and Tuerlinckx, 2000; Gelman and Carlin,
2014), especially when sample size is small and measure-
ment error is high. �ese errors describe, respectively, the
probability that the sign of a signi�cant e�ect is in the
wrong direction, and the degree by which a signi�cant ef-
fect is overestimated. If type S and M errors are high, then
we have a high chance to reveal, e.g. a positive/strong
relationship when the true relationship is negative/weak.
�ese statistics can be obtained through a design analysis,
in which a simulation study is performed, assuming a true
e�ect size, possibly taken from existing literature: data are
simulated according to a design identical to the one used
in the original study (Gelman and Carlin, 2014), which in
turns allow for the computation of type S and M errors.

Transparent reporting �e ASA’s statement (Wasser-
stein and Lazar, 2016) stresses that a p-value alone cannot
be used to draw scienti�c conclusion, even less policy deci-
sions. First, it should be clear to what null-hypotheses (and
assumptions) they correspond. Second, as p-values depend
on at least two properties, the sample size and the magni-
tude of the biological e�ects, these should be reported in
parallel. Sample sizes, as shown in Fig. 8, have a strong im-
pact on the ability of the statistical test to detect very small
e�ects. Most o�en, although the size of the total sample
of the study is reported, information on the actual sam-
ple sizes used in di�erent statistical tests are missing. �e
density of missing data might greatly vary among statis-
tical tests relying di�erent sets of variables, it may make
comparisons of p values across models on di�erent sub-
samples unreliable. As p-values cannot be used directly to
formulate statements about the magnitude of the e�ects,
parameter estimates and their standardised derivates can
be informative in this regard. E�ect size conventions (e.g.
sensu Cohen, 1988) can be used to make judgements about
the whereabouts of the focal e�ect along the continuum
between small and strong e�ects (Nakagawa and Cuthill,
2007). However, it should not be forgo�en that e�ect sizes
are always estimated with a certain precision, thus they
should ideally be supported by the associated con�dence
interval. In conclusion, to achieve the full transparency of
a NHT result, we suggest that the underlying sample size
(and/or degrees of freedom if applicable), the estimated ef-
fect sizes (standardised or unstandardised) together with
its con�dence interval are being reported along with the p-
value. Importantly, it is of vital importance to provide clear
picture on the number of hypotheses considered and the
number of statistical tests performed in study. Applying
threshold to p-value does tend to put an arti�cial asymme-
try around the threshold. In terms of evidence for rejecting
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the null-hypothesis, the di�erence between p = 0.049 and
p = 0.051 is not important. As a consequence, p-values can
be commented without a signi�cance threshold, provided
the analysis has been performed correctly (i.e. the expected
distribution is indeed uniform). In such cases, the p-value
can be seen as an estimation of the maximal FPR control
which would allow signi�cance. We thus advocate for a
systematic reporting of the actual p-values, signi�cant or
not, rather than a binned reporting (e.g. p < 0.001,p < 0.01
and p < 0.05). As p-values that do not surpass the chosen
threshold are only informative when type II error rate is
convincingly low, analyses of statistical power is pivotal
when one aim at retaining a null-hypothesis.

Negative results are interesting �ere is an ongoing
debate regarding negative results (Knight, 2003; Fanelli,
2011; Forstmeier et al, 2016, see also negative-results.org)
and publication bias in favour of signi�cant result (Easter-
brook et al, 1991; Fanelli, 2010; Franco et al, 2014). �is is an
issue that reaches beyond the topic of our discussion, but
from the NHT point of view, we feel it is important to make
a reference to the meaning of a non-signi�cant p-value.
First, since under the null-hypothesis, the p-values are uni-
formly distributed, their value bears li�le information (but
should be reported nonetheless). Second, non-signi�cance
simply means that the null-hypothesis cannot be rejected.
�is might have two explanations: (i) the null-hypothesis
is indeed true or (ii) the null-hypothesis is not true, but
the e�ect size and/or sample are too small for it to be re-
jected with appropriate con�dence. A power analysis can
even estimate how small an e�ect would have to be to be
missed by the given analysis. We thus advocate that nega-
tive results are scienti�cally informative, provided they are
interpreted correctly: they inform us on how small (from
non-existent to the maximal e�ect size the analysis at hand
could have missed) an e�ect could be.

Be aware of alternatives �e NHT is not the only
framework, in which statistical inferences can be drawn
from the data. In fact, sound scienti�c papers can be writ-
ten without a single p-value. It is not our purpose here
to list all alternatives, but it is important to note that there
might be multiple ways for analysing the same data (Naka-
gawa and Hauber, 2011; Stephens et al, 2007a; Garamszegi
et al, 2009). Each of these, such as the one that is based
on p-values, can have both strengths and weaknesses. It is
pivotal that the researcher understands these characteris-
tics for the correct interpretation of any statistical output.
When more than one statistical approach is available for
addressing the same biological question, it is o�en straight-
forward to apply these in parallel that can be used to eval-
uate the robustness of the results. If di�erent results are
obtained via di�erent methods, the correct interpretation
of these di�erences can be useful to identify the peculiari-
ties of the data or even can be suggestive about biological
pa�erns.

Conclusion
Properly analysing data is as much an important part of

the scienti�c process as the experimental design is. Not
realising this state of truth can lead to the general con-
clusion that “if the experiment was well performed and
the p-value is signi�cant, then it must mean something”.
However, this conclusion is not automatically guaranteed.
�e only meaning of a p < 0.05 is that, at the risk of 5%
of being wrong, the chosen null-hypothesis and way of
analysing data is not compatible with the observed data,
which might be due to the presence of an e�ect, but other
information (at the very least, transparent report of the
analysis, e�ect size and sample size) are needed to con�rm
this. �e ASA statements unanimously accentuate that
NHT can lead to erroneous scienti�c process if p-values are
misused and misinterpreted. However, these statements
do not mean that the NHT-based approach and p-values
per se are wrong and should be dismissed. We have hope
that realising the importance of the fundamental feature
of p-values explored here, and how our behaviour as data
analyst can destroy this feature, will help our community
realise the importance of be�er practice regarding the use
of NHT and the scienti�c reporting of p-value-based infer-
ences.
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